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Abstract. We discuss a number of lattice fermion actions solving the Ginsparg-Wilson relation. We also
consider short ranged approximate solutions. In particular, we are interested in reducing the lattice
artifacts, while avoiding (or suppressing) additive mass renormalization. In this context, we also arrive at
a formulation of improved domain wall fermions.

1 The remnant chiral symmetry
of fermionic fixed point actions

It is a notorious problem to find a lattice regularization
for fermions, which preserves chiral symmetry and avoids
species doubling. The celebrated Nielsen Ninomiya No-Go
theorem excludes the reproduction of the chiral symmetry
manifestly in a local lattice action of a single fermion, if
some plausible assumptions are respected [1] (here, local-
ity means that the inverse propagator is analytic in mo-
mentum space). However, the manifest chiral invariance
of the lattice action is not badly needed to its full extent:
with respect to important issues, it is sufficient to pre-
serve just a remnant chiral symmetry, circumventing the
Nielsen Ninomiya theorem.

One way to tackle the problem uses the technique
of block variable renormalization group transformations
(RGTs). Under such transformations, the partition func-
tions and all expectation values – hence the physical con-
tents of a theory – remain invariant [2]. Usually one maps
the theory from some fine lattice to a coarse one, increas-
ing the lattice spacing by a factor n. An infinite number of
iterations at infinite correlation length leads – for suitable
RGT parameters – to a fixed point action (FPA) of the
considered RGT. If we send the blocking factor n → ∞,
and we refer to coarse lattice units from the beginning,
then we map a continuum theory on the lattice, without
altering its physical contents. This mapping, which gener-
ates the FPA in just one step, involves a functional integral
over the continuum fields.

For free fermions, such a blocking from the continuum
can be performed by the RGT

e−S[Ψ̄ ,Ψ ] =
∫
Dψ̄Dψ e−s[ψ̄,ψ]

× exp


−

∑
x,y∈ZZd

[
Ψ̄x −

∫
drΠ(x− r)ψ̄(r)

]

× α−1
x,y

[
Ψy −

∫
dr′Π(y − r′)ψ(r′)

]
 , (1)

where ψ̄, ψ are the continuum fields, Ψ̄ , Ψ the lattice
fields, s is the continuum action, and S the fixed point
lattice action. The matrix α and the convolution func-
tion Π specify the RGT (the latter is peaked around 0
and normalized as

∫
drΠ(r) = 1). For a massless fermion,

we obtain in momentum space the fixed point propaga-
tor [3,4]

G(p) =
∑
l∈ZZd

Π2(p+ 2πl)
i(pµ + 2πlµ)γµ

+ α(p) ,

p ∈ B = ] − π, π]d. (2)

It turns out that the FPA characterized by this propagator
is free of fermion doubling [5,4].

In the limit α = 0, the blocking of the fermion fields
is implemented by δ functions. In this case, and generally
for any RGT with {α, γ5} = 0, the lattice action is chirally
invariant ({, } denotes the anticommutator). There is no
contradiction with the Nielsen Ninomiya theorem, because
in all these cases the action is non-local [5]: G−1(p) has
poles at the corners of the Brillouin zone B. This is a
non-locality of the type proposed by Rebbi [6]. His fermion
proposal was dismissed, however, because it implied zero
axial anomaly [7], and – as an extension of the Nielsen
Ninomiya theorem – it has been shown that this is the
case for a whole class of non-local fermions with poles in
G−1(p) [8]. However, a consistent blocking of the fermionic
fields, of the free gauge fields, of the interaction term to the
first order in the gauge coupling, and of the axial charge
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and current, does reproduce the axial anomaly correctly
on the lattice [9]1.

Now we turn to the case where the action (and the ax-
ial current) becomes local, so we now deal with {α, γ5} 6=
0. In this case, which is more interesting in view of prac-
tical applications, the RGT term is not chirally invari-
ant, and therefore the chiral symmetry in its naive form is
not manifest in the fixed point action. Hence the No-Go
theorem does not apply, but the chiral symmetry is still
represented correctly in the observables, due to the very
nature of the RGT [9]. This is an elegant way to by-pass
the No-Go theorem.

Since integrating out the continuum fields requires a
functional integral, the FPA – and more generally, the per-
fect action – can be made explicit in perturbation theory.
Beyond that, also non-perturbative properties, which are
known in the continuum, can be reproduced correctly on
the lattice, but the expressions for the lattice action seem
to become somewhat symbolic. However, it is very inter-
esting that the Atyiah-Singer index theorem still holds
even for the classically perfect gauge action [10] (used to-
gether with a classically perfect topological charge [11]).
Still, the action described in this way (in terms of classi-
cal inverse blocking by minimization) is somehow implicit,
but certainly not symbolic any more. In the Schwinger
model, it was indeed possible to confirm numerically the
index theorem for a classically perfect action (to a good
accuracy) [12].

The fixed point propagator (2) obeys

{G, γ5} = {α, γ5} . (3)

In the case of a local – but not chirally symmetric – term
α, this can be viewed as a remnant chiral symmetry of
the lattice action. This relation has been postulated by
Ginsparg and Wilson as the ‘softest way’ to break chi-
ral invariance in the lattice action [5]. In this form, the
remnant chiral symmetry is particularly transparent: it
is inherent to the propagator up to a local violation2. In
particular, it was demonstrated in [5] that the Ginsparg-
Wilson relation (GWR), (3) with local anticommutators,
is sufficient to obtain the correct triangle anomaly, and
also the soft pion theorems were expected to be repro-
duced correctly. Furthermore, this property is sufficient
to obtain the correct anomaly of Tr(γ5G

−1) [10,14]. In
addition, it has been shown that (3) implies a continuous
symmetry3, since the action is invariant under the substi-

1 The reason why the generalized No-Go theorem does not
apply is that the consistent perfect axial lattice current is also
non-local, whereas it has been assumed to be local in the proof
of [8]

2 In contrast, the usual chiral symmetry breaking terms like
mass or a Wilson term correspond to a local violation in the
inverse propagator. There the symmetry breaking in the prop-
agator becomes non-local. The same happens if we block a
massive fermion from the continuum (the mass is added in the
denominator of the propagator (2) [13])

3 Blocking a SUSY theory from the continuum could reveal
an analogous remnant lattice supersymmetry (but the resulting
action differs from the one proposed in [15])

tution [14]

Ψ̄ → Ψ̄(1+ε[1−G−1α]γ5) , Ψ → (1+εγ5[1−αG−1])Ψ (4)

to O(ε), as we see if we write the GWR in the form

{γ5, G
−1} = G−1{γ5, α}G−1 . (5)

All this sheds light on the “miraculous way” the FPA finds
to circumvent the No-Go theorem.

Actually, the transformation (4) is a generalization of
the case α = 1/2 considered in [14], to any α permissible
in the GWR. However, in the following we also put special
emphasis on α = 1/2. If we perform the blocking (1) with
the standard block average scheme (Π(u) = 1 if |uµ| ≤
1/2, µ = 1 . . . d, and Π(u) = 0 otherwise), then the choice
α = 1/2 (or α = −1/2) does in fact optimize the locality
of the free FPA, which we write in coordinate space as

S[Ψ̄ , Ψ ] =
∑

x,r∈ZZd

Ψ̄x[ρµ(r)γµ + λ(r)]Ψx+r . (6)

For this choice, the couplings ρµ(r), λ(r) are restricted to
nearest neighbors in d = 1, and in d > 1 their exponential
decay is extremely fast4. The numeric values of the leading
couplings in d = 4 are given in [13].

If we consider the form (6) as a general ansatz for
the lattice action, normalized so that

∑
r rµρµ(r) = 1/2

(no sum over µ) and
∑
r λ(r) = 0 (which means that the

fermion is massless), then we see that it is hardly possible
to find an ultralocal solution of the GWR (by “ultralo-
cal” we mean that the couplings are restricted to a finite
range). In general, λ may have a Dirac structure, but in
the following we assume its form to be scalar (in Dirac
space). Thus the GWR (5) with α = const. simplifies to

λ(r) = α
∑
y∈ZZd

[λ(y)λ(r − y) − ρµ(y)ρµ(r − y)] . (7)

For an ultralocal action, the right-hand side extends at
least to twice the range of the left-hand side (it extends
even further if α is momentum dependent) and it is very
unlikely that the latter can achieve cancelations every-
where beyond the range of λ, match with the left-hand
side at each point inside that range, and obey the correct
normalization5. All this tends to strongly over-determine
the degrees of freedom in an ultralocal action. This sug-
gests that in the most local exact 2d and 4d solutions, the
couplings in G−1(r) decay exponentially in |r| 6.

Considering (3), one is tempted invent new solutions
by hand, such as

G(p) =
1

ip̄µγµ
+ α , G−1(p) =

ip̄µγµ + αp̄2

1 + α2p̄2 (8)

4 For instance, on the 4-space diagonal the decay behavior is
ρµ(n, n, n, n) ∝ exp(−4.94 · n), λ(n, n, n, n) ∝ exp(−4.97 · n)

5 Summation over r leads to the requirement
∑

y
ρµ(y) = 0.

This is guaranteed for the sensible assumption that ρµ is odd
in yµ, which holds for the FPA in the block average scheme
with an even Dirac scalar α. There, ρµ is in addition even in
all yν , ν 6= µ, and λ is even in all directions

6 The simplification à la (7) for α = ±1/2 is solved in d = 1
by the Wilson action with Wilson parameter rW = ±1
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where p̄µ is some lattice version of pµ, and α is a scalar.
But for instance the obvious example p̄µ = sin pµ, which
corresponds in fact to a local action for any real α, suffers
from fermion doubling. Now one has to remove the dou-
blers, maintaining the locality of {G, γ5} (and preferably
also of G−1), and it is not trivial to find sensible alterna-
tives to the fixed point propagator.

Based on (3) one would write a general ansatz for a
solution of the GWR as

G = Gχ + α , G−1 = G−1
χ [1 +G−1

χ α]−1 , (9)

where {Gχ, γ5} = [α, γ5] = 0. G−1
χ and G−1 are lattice

Dirac operators and α 6= 0 is local. We make this explicit
for a slightly more specific fermion in the free case,

G(p) =
1

ip̄µγµ
+ α , G−1(p) =

ip̄µγµ + αp̄2

1 + α2p̄2 , (10)

where p̄µ is some lattice version of pµ, and α is a scalar.
Since G−1

χ is chirally invariant, it must violate an assump-
tion of the Nielsen Ninomiya theorem. Most violations –
such as doubling (e.g. p̄µ = sin pµ), non-Hermiticity, non-
technicality or non lattice translation invariance – are still
present inG−1 and therefore unfavorable. The same is true
for non-locality in the sense that the p̄µ have finite gaps.
However, we can allow for non-locality in the sense that
the p̄µ have divergences (“infinite gaps”) and still obtain a
local G−1. This is exactly the mechanism to proceed from
a δ function FPA to a local FPA. As an alternative, we
could insert for instance Rebbi’s fermion propagator for
Gχ and also obtain locality for G−1, albeit with a rather
slow exponential decay.

However, if we cannot achieve ultralocality, in practice
a truncation of the couplings to a short range is needed,
which causes a violation of the GWR. Therefore, what
one should aim at is a truncation that keeps this viola-
tion small, and here the optimization of locality helps.
The truncation can be carried out in an elegant way by
means of periodic boundary conditions, which keep the
normalization exact. This truncation to couplings in a unit
hypercube – for the block average FPA with α = 1/2 –
has been presented in [16] (“hypercube fermion”), and its
spectral and thermodynamic properties are drastically im-
proved compared to the Wilson fermion [16,17]. Table 1
shows that also the GWR is approximated very well by
this truncated perfect fermion.

This provides hope that the desired properties related
to the remnant chiral symmetry are realized to a good ap-
proximation for the “hypercube fermion” (HF), in partic-
ular the absence of additive mass renormalization. That
property is exact for the perfect and for the classically
perfect action [18]. While the index theorem can be con-
sidered as classical, it is especially remarkable that also
a quantum property like the stability of the chiral limit
under renormalization is fulfilled by the classically per-
fect action. Intuitively, it appears that in the chiral limit
the classically perfect actions also displays properties of
quantum perfection, and it is plausible that the continu-
ous remnant chiral symmetry (4) protects the zero bare

Table 1. The two sides of the Ginsparg-Wilson relation (5)
with α = 1/2 for the truncated block average FPA (“hypercube
fermion”) in d = 4 and in d = 2. For all vectors r, which do not
occur in the table, both quantities vanish. The exact agreement
at zero distance is a consequence of the truncation by periodic
boundary conditions

r γ5{G−1(r), γ5} γ5
∑

x
G−1(x)γ5G

−1(r − x)

d = 4
(0000) 3.70544 3.70544
(0001) −0.12152 −0.11735
(0011) −0.06007 −0.06014
(0111) −0.03194 −0.03356
(1111) −0.01685 −0.01805
(0002) 0 −0.00417
(0012) 0 0.00020
(0112) 0 0.00069
(1112) 0 0.00047
(0022) 0 −0.00034
(0122) 0 −0.00013
(1122) 0 −0.00008
(0222) 0 −0.00006
(1222) 0 −0.00005
(2222) 0 −0.00002

d = 2
(00) 2.97909 2.97909
(01) −0.48955 −0.48631
(11) −0.25523 −0.26035
(02) 0 −0.00324
(12) 0 −0.00350
(22) 0 −0.00188

mass from renormalization, similar to the remnant chiral
symmetry U(1)⊗U(1) of the staggered fermions. Here we
have the additional virtue that the number of flavors is
arbitrary (since doubling is avoided).

As a further virtue of the classically perfect action in
the chiral limit, there are no exceptional configurations
as shown in [10] (in the sense they are understood there).
However, this paper refers to a fixed point action, which is
defined implicitly by minimization. For practical applica-
tions, we need a very simple gauging prescription (involv-
ing only a few short lattice paths), and the requirement to
preserve the GWR to a good approximation could guide
the construction of such a good but simple gauging. We
comment on this concept in the Appendix.

2 A new class of solutions of the GWR

A different solution of the GWR arose from the so-called
overlap formalism [19]. To turn it the other way round, for
any solution of the GWR, the fermion determinant factor-
izes in a way compatible with a vacuum overlap [20]. Also
this consideration focused on α = 1/2, and it is interesting
that an entirely different approach singles out the same α
as the optimally local block average fixed point fermion.
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We re-derive the solution of [19] and reveal its minimal
assumption, which allows for a broad generalization. First
we define

V = 1 −G−1 , (11)

and (5) with α = 1/2 is equivalent to

γ5V γ5 = V −1 . (12)

For the case of one flavor, the solution of [19] reads

V = X(X†X)−1/2 , X = 1 −DW , (13)

where DW is the standard Wilson-Dirac operator.
Depending on the gauge background, there is a danger

of a zero eigenvalue of X, so that the expression for V is
undefined, but following [19] we assume that this can be
ignored statistically. Note that whenever V is well-defined,
then it is unitary. Hence all we need for (12) to hold, is
the property

γ5DW γ5 = D†
W , (14)

since this behavior is inherited by X and V (and by G−1).
This leaves a lot of freedom for generalizations. The min-
imal condition is γ5Xγ5 = X†, but we stay with the form

X = 1 −D (15)

and note that one may insert many lattice Dirac operators
for D. If we make also here the ansatz D(r) = ρµ(r)γµ +
λ(r) – with the normalization mentioned before, and with
a scalar form of λ – then this property always holds.

Now the question arises, what generalization is useful.
Locality is a criterion, but even if D is ultralocal – as in
the case D = DW – then the decay of the couplings in
G−1(r) is still exponential (in d > 1). For DW this can be
seen from

G−1(p) = 1 −
[
1 − i sin pµγµ − rW

2
p̂2

]

×
[
1 + (1 − rW )p̂2 +

r2W − 1
4

∑
µ

p̂4
µ

+
r2W
2

∑
µ>ν

p̂2
µp̂

2
ν

]−1/2

, (16)

which simplifies for the standard Wilson parameter rW =
1 and for rW = −1 (the value that the domain wall lit-
erature deals with). Locality is realized for any choice of
rW

7.
Returning to our general ansatz for D, we obtain

G−1(p) = 1 − [1 − ρµ(p)γµ − λ(p)]

×[1 − 2λ(p) − ρ2(p) + λ2(p)]−1/2 , (17)

and together with (7) this leads to an amusing observation:
if we insert an operator D, which obeys the GWR itself,
then X becomes unitary, and we end up with

G−1 = D . (18)
7 For rW = 1/d the form of G−1(r) simplifies to δr,0+ even-

odd-couplings, but the latter decay rather slowly. I thank M.
Peardon for this remark

For example, the inverse fixed point propagator repro-
duces itself identically, if we insert it for D. If D violates
the GWR, then it gets “GWR corrected”. This correc-
tion cannot cure all diseases, however: if D is non-local
or plagued by doubling, then the same is true for G−1.
On the other hand, also massive fermions can be GWR
corrected.

As a further criterion, one should aim at small lattice
artifacts. This suggests to insert a choice for D, which has
good properties in view of approximate rotation invariance
etc., because such properties are essentially inherited by
G−1, as the expansion (17) shows. Hence, as an experi-
ment we insert the HF for D. Its small GWR violations
(see Table 1) are corrected in G−1, but an exponential tail
of couplings is added, so that we obtain something simi-
lar to the original fixed point propagator. Of course, this
G−1 is not fully perfect, but let’s assume that for the as-
pects of interest only the GWR matters. Then the action
constructed in this way looks useful, because it is more lo-
cal than the original FPA (and much more local than the
actions obtained from D = DW ), see Table 2. Requiring
only the GWR means to relax the condition of perfection
a little, and we make use of that by further improving lo-
cality. For comparison, the leading couplings for some of
the fermion actions discussed here are listed in Table 3.

In order to generalize this class of GWR solutions
to any (non-trivial) local Dirac scalar α, still assuming
γ5Dγ5 = D†, we write

X = 1 − 2
√
αD

√
α ,

G−1 =
1

2
√
α

[
1 −X(X†X)−1/2

] 1√
α
.

(19)

Again, G−1 fulfills the GWR, and if also D does so, then
we end up with G−1 = D, since X is unitary. The latter
further implies that the spectrum of any solution G−1, at
a specific momentum p ∈ B, is situated on a circle in the
complex plane,

σ
(
G−1(p)

) ⊂ 1
2α(p)

(1 + eiϕ) , ϕ ∈ [0, 2π[ . (20)

The entire spectrum of G−1 is located between the cir-
cles given by the minimum and the maximum of α(p) 8.
For our preferred choice α = 1/2, the entire spectrum is
located on one unit circle. In Figs. 1 and 2 we illustrate
that this property is still approximated very well for the
FPA after truncation. We compare the HF and its GWR
corrected version, which is truncated again in coordinate
space, given in the second and in the last column of Ta-
ble 3. Generally, the eigenvalues are given in d = 2 by
ε1,2(p) = λ(p) ± i

√
ρ2(p), and in d = 4 by the roots of

ε4(p) − 4λ(p)ε3(p) +
[
6λ2(p) + 2ρ2(p)

]
ε2(p)

−4λ(p)
[
λ2(p) + ρ2(p)

]
ε(p) +

[
λ2(p) + ρ2(p)

]2
.

8 The same geometric structure was obtained in [10] for the
FPA with constant α, but iteration of overlapping blocking
functions Π
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Table 2. The locality of the vector and the scalar part of the FPA, of the GWR cor-
rected version of the “hypercube fermion”, and of the GWR corrected Wilson fermion
with various Wilson parameters rW . (The GWR corrected actions are not normal-
ized, because otherwise they violate the GWR again.) As a characteristic quantity, we
measure r2

ρ = (
∑

x
|ρµ(x)|x2)/(

∑
x

|ρµ(x)|), and analogously rλ

FPA HF rW = 0.85 rW = 1 rW = 1.15 rW = −1
→ GWR → GWR → GWR → GWR → GWR

d = 4
rρ 1.635 1.519 2.688 2.530 2.537 2.424
rλ 1.187 1.109 1.819 1.708 1.810 2.784

d = 2
rρ 1.268 1.198 1.981 1.816 1.844 1.946
rλ 0.871 0.844 1.286 1.177 1.206 2.330

Table 3. The leading couplings of some actions discussed in the text: the FPA, the
“hypercube fermion”, the “GWR corrected hypercube fermion” and the “GWR cor-
rected Wilson fermion” with rW = 1 (standard) and rW = −1 (standard for domain
wall fermions). All these actions have the symmetries described in footnote 5. The sim-
ilarity in the first three cases is not surprising, but it is amazing that also the fourth
example looks quite similar. For the Wilson fermion we could also vary α according
to (19). If we truncate the “GWR corrected hypercube fermion” again periodically,
then we reproduce the “hypercube fermion” identically, hence we truncate in coor-
dinate space this time and then correct the normalization by hand; this causes less
alteration and yields the last column. (An iteration of GWR correction and truncation
does hardly modify the couplings any further.)

FPA HF HF rW = 1 rW = −1 HF → GWR
→ GWR → GWR → GWR trunc. again

d = 4
ρ1(1000) 0.1400 0.13685 0.1363 0.1668 0.1023 0.13633
ρ1(1100) 0.0314 0.03208 0.0318 0.0239 0.0105 0.03185
ρ1(1110) 0.0096 0.01106 0.0110 0.0050 0.0021 0.01108
ρ1(1111) 0.0033 0.00475 0.0048 0.0007 0.0006 0.00488
ρ1(2000) 0.0040 0 0.0002 0.0238 0.0107 0
ρ1(1200) 0.0015 0 -0.0001 0.0053 0.0017 0
λ(0000) 1.8530 1.85272 1.8534 1.8334 0.0471 1.85313
λ(1000) -0.0616 -0.06076 -0.0626 -0.0560 0.0093 -0.06289
λ(1100) -0.0290 -0.03004 -0.0300 -0.0241 0.0027 -0.03024
λ(1110) -0.0146 -0.01597 -0.0152 -0.0115 0.0010 -0.01545
λ(1111) -0.0077 -0.00843 -0.0079 -0.0057 0.0004 -0.00813
λ(2000) 0.0010 0 0.0019 -0.0002 -0.0038 0
λ(1200) -0.0007 0 -0.0002 -0.0029 -0.0005 0

d = 2
ρ1(10) 0.3154 0.30939 0.3089 0.3330 0.1680 0.30907
ρ1(11) 0.0870 0.09531 0.0953 0.0580 0.0273 0.09540
ρ1(20) 0.0076 0 0.0000 0.0459 0.0288 0
ρ1(12) 0.0048 0 0.0002 0.0166 0.00068 0
λ(00) 1.4903 1.48954 1.4899 1.4912 0.0651 1.48955
λ(10) -0.2441 -0.24477 -0.2464 -0.2335 0.0173 -0.24683
λ(11) -0.1246 -0.12761 -0.1252 -0.1167 0.0061 -0.12556
λ(20) -0.0009 0 0.0015 -0.0128 -0.0103 0
λ(12) -0.0032 0 -0.0017 -0.0108 -0.0028 0
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Fig. 1. Spectrum of the “hypercube
fermion” (on top) and its GWR cor-
rected and truncated modification (be-
low) in d = 2. In both cases, the spec-
tra keep close to the unit circle, hence
the artifacts due to truncation are small.
In the most contaminated region around
ε ' 2 we observe some progress thanks
to GWR correction

While the progress due to GWR correction is evident in
d = 2 (Fig. 1), the difference is not easily visible in d =
4 (Fig. 2). However, if we measure the “mean deviation”
from the unit circle by

δ2 =
1

(2π)d

∫
B

dp


 1

2d/2

2d/2∑
i=1

|εi(p) − 1|2

 , (21)

then we observe that δ decreases from 1.09 · 10−2 for the
HF to 0.75 · 10−2 for its GWR corrected and truncated
modification. This shows that the latter solves the GWR
to an even better approximation.

For the free fermion, p = 0 always yields εi = 0,
i = 1 . . . 2d/2, and the whole sector ε ≈ 0 is hardly affected
by the truncation (see Figs. 1 and 2). If we add a gauge

interaction, then this sector is crucial for the index theo-
rem and for the absence of “exceptional configurations”,
hence its good quality is very important. Truncation ef-
fects are rather visible at the opposite sector ε ≈ 2, which
corresponds to large momenta.

In a direct application of HFs, it turned out that even
using a strongly simplified gauging (instead of the con-
sistently (classically) perfect incorporation of the gauge
field), for instance the meson dispersion is drastically im-
proved [16,21]. However, this application suffers from a
strong mass renormalization, which is a problem with re-
spect to practical issues. In particular, for the minimal
gauging by hand along shortest lattice paths, the “pion”
mass is renormalized from 0.0 to 3.0 at β = 5 [16]. Thus
one can hardly trust the couplings in general, and in addi-
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Fig. 2. Spectrum of the “hypercube
fermion” (on top) and its GWR cor-
rected and truncated modification (be-
low) in d = 4. Again, the spectra keep
close to the unit circle. From the shape
the progress due to GWR correction is
not easily visible here, but if we measure
the mean deviation from the unit circle,
which takes into account the eigenvalue
density, then we observe an improvement
by 31 percent

tion tuning to the critical bare mass is required. Its sign is
opposite to the sign of α, which means that we are led to a
region, which is unfavorable for locality. Since the trunca-
tion effects in the free fermionic FPA are small, we expect
that this renormalization could be almost avoided by us-
ing a quasi (classically) perfect gauge interaction, which
is, however, very difficult to realize in d = 4. If we gauge
by hand, trying to suppress the additive mass renormal-
ization (as in [22]), then one should use the most local free
fermion couplings, and here the “GWR corrected hyper-
cube fermion” is in business. For the idea to use the GWR
as a guide-line to construct a better gauging by hand, we
refer again to the appendix.

3 Improved domain wall fermions

So far we have considered the construction of a potentially
interesting GWR corrected propagator for the direct use.
However, the way people think about simulating overlap
fermions uses directly D in the above language. In that
context, the quality of the locality of G−1 is not directly
relevant, hence one could choose D = DW and then gaug-
ing is not problematic either. On the other hand, one runs
into some trouble with ‘exceptional configurations’ (now
in the sense that X has a zero eigenvalue)9. More impor-
tantly, an extra dimension has to be introduced, which

9 The extent of this danger depends on rW : for rW ≤ 1 the
smallest eigenvalue of X†X in the free case is 1, but for larger
rW it decreases down to a minimum of 0.288 at rW = 6.4,
before it rises again to 1
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can be interpreted as a fifth direction with Ls sites, or
simply as Ls flavors. The meaning of the square root, that
the fermion determinant is divided by, is to subtract the
contributions of heavy modes, generated by the extra di-
mension. In practice one has to work with auxiliary boson
fields [23].

For practical purposes, the domain wall fermion for-
mulation by Y. Shamir seems most suitable [24], hence
we want to discuss possible improvements in that frame-
work. In terms of vector-like gauge theories, first simula-
tions have been performed for the Schwinger model [25,26]
and for QCD [27]. Again, an extra dimension is required,
and the limit Ls → ∞ has attractive features: absence of
additive mass renormalization (supported by a one loop
calculation [28]), for the measurement of matrix elements
no fine tuning is needed either [27], and there are only
O(a2) artifacts10. In practice Ls must be finite, so that
these properties are not exact anymore, but one expects
for instance the O(a) artifacts to be suppressed exponen-
tially with Ls. Also the chiral limit appears to be stable to
a decent approximation down to Ls ' 10 [27]. Questions
of the Ls truncation have been discussed on the theoretical
level in [24,29]. We note that Shamir’s formulation allows
to work with Ls/2 only, in contrast to Kaplan’s original
proposal [30].

The action, which has been used so far, has the fol-
lowing form [31]: in Euclidean space – at a fixed extra
coordinate s – it is the usual Wilson action with gauge
fields on the links, with rW = −1 and a mass M . In the
extra dimension, it is the free massless Wilson action with
rW,s = −1 (the kinetic term with γ5), and with one addi-
tional term

Dadd
s,s′ =

σ

2
[(1 − γ5)δs,0δs′,Ls−1 + (1 + γ5)δs′,0δs,Ls−1]

(22)
(we refer to one flavor). The bare quark mass is mq =
M(M − 2)(1 + σ), but due to renormalization, there is a
tuning problem for M . On the other hand, one expects
(and observes reasonably well [27]) m2

π ∝ (1 − σ).
Now we distinguish three possible strategies for the

improvement of this type of domain wall fermions:
1) The observation that certain artifacts of DW , for in-
stance in the rotational invariance, essentially persist, mo-
tivates the use of the HF – or of its GWR corrected
and truncated modification – in the 4d (or 2d) Euclidean
space. Then for example a simplified gauging would be
less problematic, because the additive mass renormaliza-
tion and other diseases are suppressed by Ls. Still, such a
simulation would be tedious, but so is the use of a properly
gauged HF. If this works, then one cumulates all sort of
advantages: very small lattice artifacts (doubly suppressed
from the HF and from Ls), a small additive mass renor-
malization, an arbitrary number of flavors and the correct
number of Goldstone bosons. It remains to be checked if
10 This is related to the chiral symmetry at Ls → ∞, which
rules out all O(a) operators. Again, there is a certain simi-
larity with staggered fermions, but here we keep the whole
SU(N)⊗SU(N) symmetry, hence the correct number of Gold-
stone bosons is involved

the left- and the right-handed fermions can still be sepa-
rated, see below.
2) Instead one could improve in the 5-direction. If we as-
sume Ls periodicity, then its inverse propagator in the
above Wilson-like form reads

D−1
W,5(p5) = i sin p5γ5 +

rW,s
2
p̂2
5 +

σ

Ls
exp(iLsp5γ5) . (23)

If we block in the 5 direction only, the corresponding
“FPA” is given by11

D5(p5) =
∑
l5∈ZZ

Π2
5 (p5 + 2πl5)

(p5 + 2πl5)(1 + σ)γ5 + σ/Ls
+ α5 , (24)

where Π5 is the blocking prescription in the 5-direction.
If we choose again the block average, and we optimize α5
for locality, then we arrive at

D−1
5 (p5) = (1 + σ)

(u
û

)2
[
i sin p5 γ5 ± (

1
2
p̂2
5 + û)

]

u =
σ

(1 + σ)Ls
, û = eu − 1 , p5 =

2π
Ls
j ,

j = 0 . . . Ls − 1 . (25)

In a sense, there in not much to improve in one dimen-
sion, since the Wilson action (with rW = ±1) is already
perfect; we have just incorporated σ and Ls. However, the
s dependent defect, which is needed to separate the chiral
fermions, has disappeared. A way to avoid this is the use
of fixed boundary conditions in the s direction, similar to
[32]. This study is in progress.
3) Finally, one could improve directly the entire 5d action,
allowing for diagonal couplings with respect to all direc-
tions. Since there are no gauge fields on the 5-links, this is
perhaps not as disastrous as it first appears. With respect
to gauging, there is no additional problem compared to
the case 1), and we hope to suppress all discretization ar-
tifacts at once. Here, a conspiracy of M , σ and Ls affects
the couplings in all directions.

Also in this case, Ls periodic boundary conditions de-
stroy the defect in the s direction12, hence a more sophis-
ticated treatment is needed.

The defect in the s direction is needed to keep the chi-
ral fermions apart, so we focus on variant 1), which leaves
the couplings between the 4d layers untouched. Since in
general a mass parameter M appears in the physical sub-
space, we insert a massive HF. This is constructed from
the perfect action at mass M , again by truncation with
periodic boundary conditions [16]. There are two choices
for α which restrict the 1d action to nearest neighbors,
α = αM = (eM − M − 1)/M2 > 0, and α = −α−M .

11 “FPA” needs inverted commas, because we are at finite
Ls, but let’s assume that we start at a huge size nkLs, then
perform k RGTs with block factor n, so we end up in Ls. In
the limit nk → ∞ we obtain the expression (24)
12 This happens even if we split α−1 into [α−1

L (1 − γ5) +
α−1

R (1 + γ5)]/2, possibly combined with chirally specific func-
tions ΠL, ΠR
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Table 4. The truncated perfect “hypercube fermion” at the
masses, which have been used in domain wall fermion simula-
tions: M = 1.7 in d = 4, and M = 0.9 in d = 2

r ρ1(r) λ(r)

d = 4 M = 1.7
(0000) 0 0.95860
(1000) 0.02606 -0.01613
(1100) 0.00468 -0.00476
(1110) 0.00123 -0.00178
(1111) 0.00041 -0.00076

d = 2 M = 0.9
(00) 0 1.14008
(10) 0.14008 -0.10247
(11) 0.03278 -0.04382

In higher dimensions, the first (second) option optimizes
the locality for positive (negative) M 13. In the follow-
ing, we choose α = αM . As a sound basis, the hypercubic
couplings for typical masses, which have been used in sim-
ulations, M = 1.7 in d = 4 (the approximate (quenched)
critical value at β = 6 [27]) and M = 0.9 in d = 2 [25,26],
are given in Table 4. Note, however, that the renormal-
ization with an improved action could lead to a different
critical value of M .

Finally, we want to show that it is indeed possible in
this framework to separate the chiral modes. To be able to
do so analytically, we now let Ls → ∞, and we switch to
Kaplan’s version, with an ordinary Wilson action in the s
direction plus a mass-like term m(s) = m · sign(s), sign(s)
= 1 for s > 0, −1 for s < 0, and 0 at s = 0. Hence the
free fermion action reads

S
[
Ψ̄ , Ψ

]
=

∑
x,r,s,s′

Ψ̄x,s

[[
ρµ(r)γµ + λ(r)

]
δs,s′ (26)

+
[
1
2
(δs,s′+1 − δs+1,s′)γ5 +m(s) +

rW,s
2

× (δs,s′+1 + δs+1,s′ − 2δs,s′)
]
δr,0

]
Ψx+r,s′ ,

where ρµ, λ refer to the HF at some mass M . We now fol-
low the procedure of [33] to look for solutions of the type
ΨR,L = eipxΦsuR,L, where γ5uR = uR, γ5uL = −uL. We
require the inverse propagator G−1(p, s) to reduce to a
chirally invariant G−1(p) 14, which amounts to the condi-
tion[

1
2

(δs,s′+1 − δs+1,s′) γ5 +m(s) − rW,s
2

13 Generally, the changes M → −M and α → −α imply
ρµ → ρµ, λ → −λ
14 Here we mean full chiral invariance, not just the GWR.
Hence G−1(p) is not a truncated perfect Dirac operator, but
just its vector part iρµ(p)γµ, which – in its isolated form –
would imply fermionic doubling

× (δs,s′+1 + δs+1,s′ − 2δs,s′) + λ(p)
]
ΦsuR,L = 0 . (27)

Following Kaplan [30] we make the ansatz Φs+1 = zΦs for
s, s+ 1 6= 0. The solutions for z are

zR,L =
U ±

√
U2 − r2W,s + 1

rW,s ∓ 1
,

U = m(s) + λ(p) + rW,s . (28)

The upper (lower) sign in the denominator refers to zR
(zL), and in both cases the two signs in the numerator are
possible. As an example, in the limit rW,s → 1 there is only
one finite solution: zR = 1/U . Normalizability requires

|zR(s > 0)| =
∣∣∣∣ 1
1 +m+ λ(p)

∣∣∣∣ < 1

→ λ(p) > −m or λ(p) < −(2 +m)

|zR(s < 0)| =
∣∣∣∣ 1
1 −m+ λ(p)

∣∣∣∣ > 1

→ (m− 2) < λ(p) < m . (29)

The allowed region for λ(p) is shown as shaded areas
in Fig. 3 on the left. On the right we show the interval
of values that λ(p) actually takes, depending on M (for
α = αM ). The minimum is at λ(p = 0) = M2/(eM − 1),
and we see that there are many possible combinations ofm
and M which yield a single right-handed fermion. In some
cases the solution collapses at some “critical momenta”,
in others it extends all over the Brillouin zone. It is par-
ticularly favorable to choose a rather large parameter M ,
so that 4d locality is excellent and – as a related property
– λ(p) is confined to a narrow interval for all momenta.
Then, for instance m ≈ 1 . . . 2 guarantees the solution to
exist at any momentum.

In the limit rW,s → −1 the situation is analogous, but
there one deals with a left-handed fermion.

4 Conclusions

We have revisited the fixed point action approach to the
formulation of lattice chiral fermions, emphasizing in par-
ticular the blocking from the continuum and the rôle of the
Ginsparg-Wilson relation. We also consider the artifacts
in the remnant chiral symmetry in short ranged truncated
fixed point actions. Based on a formula used in the overlap
formalism, we found a method how a lattice Dirac opera-
tor can be “GWR corrected”. This leads to a large class of
new solutions, and it allowed us to further optimized their
locality, which pays off in reduced spectral artifacts after
truncation. Along these lines, we also arrived at a formula-
tion of improved domain wall fermions. We discussed prac-
tical issues in view of their application in simulations of
vector-like theories. The improvement could, for instance,
reduce the extent Ls in the fifth direction, which is needed
for a number of favorable properties. Finally, we showed
that the mechanism to separate the chiral fermions still
works in our improved formulation.
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Fig. 3. On the left, the shaded regions are the allowed areas for λ(p) providing a right-handed Kaplan-type fermion for rW,s = 1
and m(s) = m · sign(s). On the right, we show the interval where λ(p) takes its values for a given parameter M and α = αM .
(For α = −α−M the shaded area is mirrored at the origin.)
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Appendix

We know that FPAs obey the GWR, which implies plenty
of attractive properties, but we also know that such ac-
tions are extremely hard to implement. What we need is a
good but very simple gauging of our HF, and here we want
to comment briefly on the possibility to use the GWR for
the construction of such a gauging.

We denote the lattice Dirac operator by D and refer
to α = 1/2, so that the GWR can be written as

D(r) + D̄(r) =
∑
x

D̄(x)D(r − x) , D̄ = γ5Dγ5 . (30)

Let D(r) represent the HF in the free case, which obeys
the GWR to a good accuracy (see Table 1). The task
is now to find a gauging which preserves this property
in the interacting case. This is rather involved, because
now the GWR is supposed to hold approximately for each
lattice path. (The situation is even worse in cases where
α 6= const.).

As a simple example, we consider the gauging by the
average of the shortest lattice paths only, and we discuss
the case d = 2. Regarding condition (7), the case r = (00)
remains exact, and for r = (11), (21) and (22) the combi-
nation of couplings, which nearly matches in the free case,
acts on all paths involved, hence the GWR is still approx-
imated well. For r = (20) that combination of couplings
splits into coefficients for the paths of length 2 and 4, but
all those coefficients are small, so the situation is not much
worse than in the free case. The main problem is the case

r = (10), which amounts to

−0.490[link] = −0.608[link]
+0.061[sum over staples] . (31)

Here the matching path by path does not work well, and
this provides some insight into the limitation of the min-
imal gauging by shortest lattice paths. One should now
correct for that by inserting fat links, a clover term etc.
and tuning its coefficients. This work – and the extension
to d = 4 – is in preparation.

At this point, we just add a remark on how to simplify
this task. If we generally define X = 1 −D, X̄ = γ5Xγ5,
then the GWR for α = 1/2 reads

X̄X = 1 . (32)

If D is linear in the γµ’s, D = ρµγµ + λ, then the GWR
is identical to the requirement that X be unitary. We in-
sert again the HF for D and introduce a new hypercubic
variable λ̃ = 1 − λ, so the GWR takes the form∑

x

[−ρµ(x)ρµ(r − x) + λ̃(x)λ̃(r − x)] = δr,0 . (33)

Again this holds exactly at r = 0 for any reasonable gaug-
ing, but r 6= 0 is complicated. Of course, we cannot avoid
the inconvenient quadratic term by these re-definitions,
but at least the rest has been optimally simplified.
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